

LANDESANSTALT FÜR LANDWIRTSCHAFT UND GARTENBAU

TIERSEUCHENKASSE

Orientierungsbereiche für Gehaltswerte von Mischrationen in der Milchkuhfütterung

Die tabellierten Orientierungsbereiche für Mischrationen stellen Ziel- sowie Toleranzbereiche dar. Sie sollen sowohl der Ausrichtung von Rationskalkulationen als auch der Überprüfung und im Bedarfsfall der Anpassung schon in der Fütterung eingesetzter Rationen im Controlling dienen.

Die Orientierungsbereiche beinhalten erhebliche Spannen. Ergebnisse von Rationsberechnungen oder von Laboranalysen sollten sich in diesen bewegen. Bei abweichenden Gehalten von Mischrationen wären die Kalkulationen und Fütterungsanweisungen oder Fehler in der Rationsumsetzung im Fütterungsmanagement (Aufbereiten, Laden, Vorlegen, Fressen) zu korrigieren. Dabei ist immer die tatsächliche Fütterungswirkung auf die Versorgungslage der Kühe genau zu prüfen und sind dann daraus abgeleitet die Entscheidungen für das Fütterungsmanagement zu treffen.

Die Verwendung und Umsetzung der in der Tabelle aufgeführten Bereiche für einzelne Rationstypen, Fütterungsabschnitte/gruppen hängt immer von den konkreten betrieblichen und/oder herdenspezifischen Rahmenbedingungen ab (Haltung/Gruppenbildung, Bestandsgröße, Melktechnik, Arbeitsorganisation, Leistungsniveau u.a.m.).

Die Orientierungsbereiche stellen Hinweise zu möglichen Energie- und Nähstoffkonzentrationen von Rationen dar, mit denen dem quantitativen Energie- und Nährstoffansprüchen von Kühen in bestimmten Gruppen/Abschnitten bei wiederkäuergerechter Versorgung entsprochen werden kann. Diese ergeben sich aus dem Erhaltungsbedarf sowie aus dem für die Milchleistung und für den notwendigen Ansatz (Wachstum, Körperreserven, Trächtigkeit) und sind unter Berücksichtigung der erwarteten und/oder tatsächlichen Futteraufnahmen der Kühe im jeweiligen Gruppenmittel als Zielwerte in die Rationskalkulationen und in das Fütterungscontrolling zu übernehmen. Der Sicherung ausreichender Strukturwirksamkeit der Rationen kommt dabei eine herausragende Bedeutung zu. Den Ansprüchen an den Pansen- bzw. Nährstoffsynchronismus ist so weit wie möglich zu entsprechen. Die Orientierungsbereiche berücksichtigen tierindividuelle und herdenspezifische Variationen sowie grundsätzlich zu erwartende unvermeidbare Abweichungen in der Umsetzung der praktischen Fütterung. Aus dem Controlling abgeleitet sind im Rahmen der Orientierungsbereiche Anpassungen der Rationen möglich und werden erforderlich sein. Wichtige Parameter zur Bewertung der Rationsberechnungen und Analyseergebnisse auf Basis der tatsächlichen Fütterungswirkung der Rationen sind

- Lade-/Mischgenauigkeiten (Fütterungsprotokolle, Partikellängenverteilungen),
- Futter-/Trockenmasseaufnahmen,
- Fressverhalten,
- Milchmengen und Milchinhaltsstoffe (Tankmilch, MLP, Melktechnik),
- Körperkondition (body condition score BCS, Rückenfettdicke), Körpermassen,
- "Kuhsignale" (Wiederkautätigkeit, Kotbeschaffenheit, Fitnessmerkmale, Bewegungsverhalten u.a.m.),
- Tiergesundheits-/Fruchtbarkeitsdaten (Erkrankungs-/Störungsinzidenzen)
- Stoffwechseldaten (tierärztliche und Managementroutinen, Bestandsdiagnostik)

Eine umfassende, gezielte und sichere Futtermittelanalytik hinsichtlich Parameterspektrum und Frequenz ist die grundsätzliche Basis für die Umsetzung und Kontrolle der Orientierungsbereiche der Mischrationen.

Die Ableitung der Orientierungsbereiche erfolgte unter Verwendung nachfolgend genannter Quellen:

- Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie (2001, 2023)
- Arbeitskreis Futter- und Fütterung der Deutschen Landwirtschaftsgesellschaft e. V. (2012, 2023)
- LKS Landwirtschaftliche Kommunikations- und Servicegesellschaft mbH (2023)
- Klinik für Klauentiere der Freien Universität Berlin (2007)
- Commitee on Nutrient Requirements of Dairy Cattle, Board on Agriculture and Natural Resources (2023)

Bei der Festlegung der Orientierungsbereiche wurden Erfahrungen und Hinweise aus der Fütterungspraxis von Milchviehbetrieben, aus unterschiedlich organisierter praktischer Fütterungsberatung sowie Versuchsergebnisse aus der LLG Sachsen-Anhalt maßgeblich berücksichtigt. Die Hinweise zu den Orientierungsbereichen werden auf Basis neuer wissenschaftlicher Erkenntnisse, abgeleiteter Empfehlungen, technischer Weiterentwicklungen fortlaufend aktualisiert.

Orientierungsbereiche für Gehaltswerte von Mischrationen für Milchkühe im Fütterungscontrolling

Tiergesundheitsdienst und Landesanstalt für Landwirtschaft und Gartenbau Sachsen-Anhalt (2023)

Parameter	Einheit	TMR Frisch- melker*, Hochleistung	Mittel- melker/ PMR AMS	TMR Altmelker	Trocken 1, früh	Trocken 2, VB	Trocken einphasig	
Trockenmasse	g/kg FM	>320 – 420						
Rohasche		<90 <100						
Rohprotein	g/kg TM	>150 – 165	>145 – 160	135 – 150	120 – 130	130 – 150	125 – 140	
Rohfaser		160 - 180	170 – 190	180 – 200	220 - 300	180 – 220	200 - 280	
Rohfett (ohne pansenstabil)			<45			<40		
Stärke ¹⁾		180 – 230	140 - 200 ⁴⁾	100 - 1804)	50 - 150 ⁴⁾	100 - 2004)	80 - 1804)	
Zucker ²⁾			<65 <60					
Stärke + Zucker		210 – <290	150 – 240	130 – 210	80 – 150	130 – 230	110 – 210	
Beständige Stärke ³⁾		30 - 60	20 – 50	10 - 40	0-10	10 - 30	5 – 20	
aNDFom		>310 – 360	330 – 380	340 – 400	>400 – 500	>360 – 430	380 – 480	
Grobfutter + Nebenprodukte		>200 – 280	>210 - 310	>220 – 340	>320	>270	>290	
Verdaulichkeit (30 h)	%	40 – 60						
ADFom	g/kg TM	190 – 220	200 – 240	210 - 250	250 – 350	210 – 290	230 – 320	
NFC		340 – 420	310 - 400	290 – 390	220 - 360	290 – 390	240 – 380	
NEL	MJ/kg TM	>6,9	6,5 – 6,8 ⁴⁾	6,0 - 6,7 ⁴⁾	5,2 - 5,8 ⁴⁾	6,2 - 6,74)	5,6 - 6,4 ⁴⁾	
nXP	g/kg TM	>155 – 175	140 – 150	130 – 145	115 – 135	125 – 145	120 – 140	
RNB		-1,0 - 0,5 (<1)	-1,0 - 0,5 (<1)	-1,0 - 1,0	-1,0 - 1,0 (<2)	-1,0 - 0,5 (<1)	-1,0 - 1,0	
UDP		25 – 35	20 – 30	15 – 25	15 – 20	20 – 30	15 – 25	
Proteinlöslichkeit	%	30 – 40						
Kalzium	g/kg TM	6,4 - 7,5 ⁵⁾	5,3 – 5,8	5,0 – 5,5	4,0 - 6,0	4,0 - 14,06)	4,0 - 9,0 ⁶⁾	
Phosphor		3,6 – 4,2	3,2 – 3,7	3,1 – 3,5	2,5 – 3,5	2,5 - <4,0	2,5 – 3,5	
Magnesium		1,6 – 2,5	1,5 – 2,0	1,4 - 2,0	1,5 – 2,0	>2,0 - 4,5 ⁶⁾	>2,0 - 4,06)	
Natrium		1,4 - 2,0	1,3 – 1,8	1,2 - 1,4		1,2 - 2,0		
Kalium		10,0 – 16,0			10,0 - 16,0	10,0 – 16,0 <14,0		
Chlorid		2,0 - 8,0			3,0 - 8,0 ⁶⁾	3,0 -	10,0 ⁶⁾	
Schwefel		2,0 – 2,7			1,5 – 2,2	1,5 - <3,5 ⁶⁾	1,5 - 3,0 ⁶⁾	
DCAB	meq/kg TM		>150 – 350		100 – 300	-200 – 150	50 – 150	
Eisen		50 – 750 ⁷⁾						
Kupfer	mg/kg TM	10 – 307)						
Zink		50 – 120 ⁷⁾						
Mangan		50 – 120 ⁷⁾						
Selen		0,2 – 0,4 ⁷⁾						
Jod		0,5 - 0,77)						
Cobalt		0,2 - 0,47)						
Vitamin A	4	5.000 10.000						
Vitamin D	IE/kg TM	1.250			3.000			
Vitamin E	mg/kg TM	35 35 75			75	75		

^{*}Identische Orientierungsbereiche für Frischmelker- und Hochleistungsrationen. Separate Frischmelkerrationen (ca. bis 30. Laktationstag) bieten im Bedarfsfall die Möglichkeit gezielter Ergänzung (Spezialfuttermittel Optimierung Energie-/Fett-/Pansenstoffwechsel). Separate Haltungs-/ Fütterungsgruppen für Frühlaktation/Frischmelker ermöglichen besonders erhöhten Kuhkomfort (z. B. Tier-Fressplatz-Verhältnis, Liegebereich u.a.).

6) DCAB, Ca- und Mg-Gehalte je kg TM in Abhängigkeit vom gewählten Konzept der Milchfieberprophylaxe:

Prophylaxekonzept	DCAB, meq	Ca, g	Mg, g				
Moderate DCAB	100 – <u>125</u> – <150	6,0 – 7,0	>2,5				
Anionisch mild	0 – <u>50</u> – <100	7,0 – 9,0	>3,0				
Anionisch	-200 – <u>-100</u> – 0	9,0 – 14,0	>3,5				
Ca-Bindung	>100	4,0 – 7,0	>4,0				
Ca-Reduzierung	wenn >200	<4,0	2,0 - 3,0				

⁷⁾ Erste Angabe Bedarf nach GfE (2001), zweite Angabe zulässige Höchstgehalte nach VO (EG)

Ggf. Gärsäuregehalte: <40 g Milchsäure, <20 g Essigsäure, <0,1 g Buttersäure/kg TM der TMR

¹⁾ Durch Untersuchungsmethode erhöhte Analysenwerte in Mischrationen mit pektinreichen Nebenprodukten möglich.

²⁾ In TMR-Analysen gültig für wasserlösliche Kohlenhydrate (WLKH, Zucker + Fruktane), insbesondere in zuckerreichen Rationen zu beachten.

 $^{^{\}rm 3)}$ Beständige Stärke 7h (% der Stärke) analysiert: 15 – 25 % für alle Abschnitte.

⁴⁾ Ausrichtung an BCS, angestrebter Startleistung (Trockensteher 2/VB TS), aktueller Milchleistung (Mittel-/Altmelker), Anzahl Fütterungsgruppen.

 $^{^{\}rm 5)}$ Im oberen Bereich für Laktationsstart/Frühlaktation und bei niedriger DCAB.